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Abstract. The effect of nonlinear dynamics on quantum correlations is studied by using the
spin-kicked rotor, as a model system, which consists of a two-level system and a kicked
rotor. Quantum-mechanical entangled states between the two-level system and the rotor form
‘tunnelling’ doublets when the corresponding classical dynamics of the rotor is regular. In
contrast to this, chaotic dynamics of the rotor makes chaotic entangled states after the destruction
of these tunnelling doublets.

1. Introduction

When we study a composite quantum system, which consists of several elements, we
usually divide the system into subsystems as a description. However, for describing the
system being composed of subsystems, we must pay the penalty that each subsystem is
not generally in a definite state, even when the total system is in a pure state; i.e. these
subsystems generally have non-classical correlations. Even if there is no quantum correlation
at all in an initial state, a time evolution of the total system generally produces a state
quantum-mechanically correlated between the subsystems. Such entanglements between
subsystems are not only interesting phenomena themselves but also provide conceptual
problems of quantum mechanics (d’Espagnat 1976, Zurek 1982). In this paper, we study
the effect of nonlinear dynamics on quantum correlations. Since the Schrödinger equation
is a linear equation, we use the termnonlinearity to the corresponding classical system,
whose qualitative feature essentially determines quantal properties (Gutzwiller 1990).

A two-level system coupled to other degrees of freedom, say, acolleague, provides a
simple model of entanglements. Here we explain how ‘tunnellings’ in the two-level system
affects entanglements between these two subsystems. First, we start from the simplest
case, an isolated two-level system̂HI = εσ̂z + J σ̂x , where σ̂ = (σ̂x, σ̂y, σ̂z) are Pauli
matrices. If we setJ = 0, eigenvectors ofĤI are two ‘localized’ states| ↑〉 and| ↓〉 whose
eigenvalues are+ε and−ε, respectively. When we introduce non-zero ‘tunnelling matrix
element’J , two eigenvectors ofĤI form a pair of ‘tunnelling doublets’ which are linear
superpositions of two localized states| ↑〉 and | ↓〉. Thus we get a model of tunnellings
between two manifolds up (σz = +1) and down (σz = −1) in the two-level system. Next,
we couple this two-level system to the colleague. Two different dynamics of the colleague
at two manifoldsσz = +1 and−1 destroy coherent tunnelling oscillations in the two-level
system and make two subsystems entangled. Consequently, most of the tunnelling processes
now become incoherent tunnelling (Kagan and Klinger 1974, Holstein 1959) in which not
only the two-level system but also the colleague tunnels at once. When the difference
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of the two colleagues’ dynamics is small, we can expect that the tunnelling between two
manifolds is only slightly incoherent and the resultant tunnelling states still form tunnelling
doublets. In our numerical experiments to investigate incoherent tunnellings we confirmed
that a ‘regular’ colleague produces tunnelling doublets. On the other hand, we found that
a ‘chaotic’ colleague produce chaotic entangled states, which do not compose tunnelling
doublets.

This paper is organized as follows. In section 2, we introduce the spin-kicked rotor (the
kicked rotor for a spin-12 particle (Scharf 1989)) as the target of our numerical experiments.
In the numerical experiments, we evaluate the degree of entanglement by the polarization
(Landau and Lifshitz 1977, section 59), which is introduced in section 3. In section 4, we
show the result of our numerical experiments. In section 5, we discuss the result of the
numerical experiments. Finally, in section 6, we summarize this paper.

2. Spin-kicked rotor

As the target of numerical experiments, here we employ the spin-kicked rotor (the kicked
rotor for a spin-12 particle (Scharf 1989)), which is composed of a two-level system and a
rotor with instantaneous interactions (‘kicks’) at unit time intervals. We will useq andp
to denote the position and the momentum of the rotor respectively and impose the periodic
boundary condition with period 2π on q, 0 6 q < 2π . Then, the Hamiltonian of the
spin-kicked rotor is the following:

Ĥ (t) = T (p̂)⊗ 1̂TLS+
∑
n∈Z

δ(t − n)V̂ (q̂) (1)

whereT (p) = 1
2p

2 is the kinetic term of the rotor,̂1TLS is the identity operator of the two-

level system andV̂ (q̂) is the potential term acting on the total system. With c-numberq,
V̂ (q) is an operator of the two-level system; accordingly, it can be decomposed as follows:

V̂ (q) = φ(q)1̂TLS+B(q) · σ̂ (2)

whereB(q) = (Bx(q), By(q), Bz(q)). The first termφ(q)1̂TLS is the potential term which
only affects the rotor for each kick, and the second termB(q) · σ̂ is the interaction term
between the two-level system and the rotor. Since this model is a periodically driven
quantum system, we introduce the Floquet operatorÛ which governs a unit time evolution:

Û = exp
←

{
1

ih̄

∫ n+1−0

n−0
dt Ĥ (t)

}
(3)

where exp
←

means the time ordered exponential andn is an arbitrary integer. Note that̂U

does not depend onn, which meansÛ represents stationary properties of this model. Using
(1), Û can be decomposed into the product of free part propagatorÛF = exp{ 1

ih̄ T (p̂)}⊗1̂TLS

and the kick part propagator̂UK = exp{ 1
ih̄ V̂ (p̂)}:

Û = ÛFÛK . (4)

In this paper, we chooseφ(q) = K cosq andB(q) = δK(J̃ , 0, cosq). As we shall see
below, this is a case in which the spin-kicked rotor can be regarded as an extended version of
the standard mapping describing by the HamiltonianĤK(t) = 1

2p̂
2+∑n∈Z δ(t − n)K cosq̂

(Chirikov 1979, Casatiet al 1979).
In order to investigate the qualitative nature of the dynamics, e.g. regular or chaotic, for

a quantum system, we need a classical counterpart of the quantum system as we mentioned
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earlier. Namely, if we find chaos in a classical system, the corresponding quantum system
inherits the ‘chaotic’ nature from the classical system (Gutzwiller 1990). Although the spin-
kicked rotor does not have the classical correspondent, in a naive sense, since the Hilbert
space of the two-level system has the dimension 2 by definition, which may be too small
to achieve the quantum-classical correspondence, we will seek ‘classical counterparts’ of
the rotor subsystem in this paper. Here we employ a simple way to obtain a trajectory
picture of the rotor. Since we will study only the weak ‘tunnelling’ caseJ̃ � 1 in
this paper, the Hamiltonian can be decomposed into three parts: two standard mappings
described by the Hamiltonians for two manifoldsσz = ±1, 〈↑ |Ĥ (t)| ↑〉 = ĤK+δK(t)
and 〈↓ |Ĥ (t)| ↓〉 = ĤK−δK(t) and the tunnelling matrix elementJ = J̃ δK which causes
tunnelling between the two manifolds during kicks in the two-level system. We can expect
that the dynamics of the system can be regarded as just the superposition of two independent
motions of two standard mappings in the first approximation, though this picture will break
in the chaotic case as we shall see below. These two standard mappings have classical
counterparts. Thus we can study the effects of the qualitative nature of the corresponding
classical dynamics on the quantum system. We concentrate on the rather simple case
δK � K, namely two standard mappings are almost the same and thus we can regard the
single parameterK in this system as the nonlinear parameter, which controls the nature of
the dynamics, regular or chaotic.

3. Polarization as a measure of quantum correlation

In our numerical experiments, we will measure the quantum mechanical correlation, namely,
the degree of entanglement, between the two-level system and the rotor. For this purpose,
here we introduce the polarizationP = |〈σ̂〉| (Landau and Lifshitz 1977, section 59),
which is the magnitude of the Bloch vector〈σ̂〉 (Feynmanet al 1957), where〈·〉 means the
quantum mechanical average with the state that we supposed. Since we are interested in
the quantum mechanical correlation between the subsystems, the two-level system and the
rotor, we restrict ourselves to considering only pure states, which can be represented by state
vectors without using the density matrix, as the states on which the above average〈·〉 and
consequently the polarizationP are evaluated. For the sake of the reader who is not familiar
with describing the quantum correlation in the two-level system in terms of the polarization
P (Landau and Lifshitz 1977, section 59), we here explain briefly the relationship between
the polarizationP and the reduced density matrix̂ρ of the two-level system. As is usual,
the reduced density matrix̂ρ satisfies the inequality 06 Tr ρ̂2 6 Tr ρ̂ = 1, supposing that
ρ̂ is normalized. The middle equality holds only when the two-level system is in a pure
state and Tr̂ρ2 becomes smaller when the two-level system is in a stronger mixed state,
namely, it has stronger quantum correlation with the rotor. Accordingly, we can measure
the degree of the quantum correlation between the two-level system and the rotor by the
quantity 1− Tr ρ̂2, which is equal to1

2 − Tr{(ρ̂ − 1
2)

2} = 1
2 − Tr{ 14P 21̂TLS} = 1

2(1− P 2),
where we used the special property of the two-level system to derive the second expression
from the first. Since 06 P 6 1, we now know that larger (smaller)P means smaller
(larger) quantum correlation between the two-level system and the rotor.

4. Numerical experiments and their interpretation

In order to elucidate effects of qualitative nature (e.g. regular or chaotic) of the rotor’s
dynamics (which has a classical counterpart) on the quantum correlation between the rotor
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and the two-level system in the spin-kicked rotor, we will examine quantum-mechanical
stationary states of the spin-kicked rotor for various values of the nonlinear parameterK by
fixing other parameters. By examining stationary states of the system rather than its time
evolution processes, we can reveal structures of the system (e.g. tunnelling doublets) more
easily and clearly. The stationary states of the spin-kicked rotor model are eigenstates of
the Floquet operator̂U . We regard these eigenstates{|φi〉}i of the Floquet operator̂U as to
consist of an ‘ensemble’; and definēP as an ‘ensemble average’ ofPi with equal weight,
wherePi is the polarization of theith eigenstate|φi〉.

At first, before we proceed to quantum mechanical results, we show how the classical
dynamics of the rotor is changed when the parameterK is varied. Figure 1 shows Poincaré
sections of two classical mappings generated from the Hamiltonians〈↑ |H(t)| ↑〉 =
HK+δK(t) and 〈↓ |H(t)| ↓〉 = HK−δK(t) for the up and the down manifolds, where
δK = 0.0625. SinceδK � K ∼ 1, two Poincaŕe sections for each value ofK ((a),
(b) or (c)) are essentially the same in the global scale. AsK increases, resonances grow
(figure 1(b)) and finally global chaos emerges whenK exceeds the critical valueKc ∼ 0.97
(figure 1(c)) (Lichtenberg and Lieberman 1992, ch 4).

Figure 2 shows responses of the ensemble averaged polarizationP̄ to the variation of
the nonlinear parameterK for three values of the Planck’s constanth†. Whenh is very large
(curve 1), the polarization̄P has a very weak dependence on the nonlinear parameterK

and this almost constant value ofP̄ is very close to the possible maximum value 1. These
two observations can be explained by remembering that large Planck’s constant softens
the detailed phase-space structure of the rotor’s dynamics. Namely, large Planck’s constant
wipes out the difference of the dynamics of the rotor on the two manifolds, hence tunnelling
becomes almost coherent and the polarization for these tunnelling states is almost 1. On
the other hand, since the difference of the rotor’s classical dynamics, i.e. regular or chaotic,
is also softened, the nature of quantum dynamics of the spin-kicked rotor can exhibit only
small differences. As Planck’s constanth becomes smaller (curve 2, 3), the polarizationP̄
depends more strongly on the nonlinear parameterK. Whenh is small,P̄ takes small values
for K . 0.5 or 1.0 . K, while it takes large values in the middle range 0.5 . K . 1.0.
In order to elucidate this non-monotonic dependency ofP̄ on K, next we study details of

† Here we explain the procedure that we employed to obtain numerically the eigenstates of the system. In order to
achieve effectively the open boundary condition along the momentum space, we only consider the set of eigenstates
that are selected by the following procedure. Such a procedure for selection is possible since all eigenstates in this
quantum system are localized even though the corresponding classical system exhibits unlimited diffusion in time
along the momentum axis (Casatiet al 1979, Fishmanet al 1982, Scharf 1989). First, by truncating the Hilbert
space of the quantized rotor into the finite- (say,N -) dimensional Hilbert space, we impose the periodic boundary
condition on the momentum space−Wp/2 6 p < Wp/2, whereWp = h̄N . Next, we numerically diagonalize the
Floquet matrix of the truncated Hilbert space. We consider only the eigenstates that localizes within the momentum
space−W cut

p /2 6 p < W cut
p /2, whereW cut

p is small enough compared toWp . Namely, the probability that the
momentum is in the range−W cut

p /2 6 p < W cut
p /2 for an eigenstate under consideration must be larger than the

threshold. Hence, the boundary condition along the momentum axis actually does not have any influence on the
eigenstates under consideration.

We employN = 128 for h/(2π)2 = 0.038 16, N = 256 for h/(2π)2 = 0.015 63, andN = 512 for
h/(2π)2 = 0.007 816. They correspond to the condition thatWp ∼ 8π . As an exception, we employN = 1024 for
h/(2π)2 = 0.007 816 andK = 2.0 (this correspond toWp ∼ 16π ). Since in this case the localization lengthW loc

p

in the momentum space has a large value∼ 4π (in comparison, from the estimation with the diffusion constant
for the classical system,W loc

p /(2π) = 0.97 (Shepelyansky 1986)) and we consequently need a larger value∼ 16π
for Wp . Since the difference of the numerical results withN = 512 andN = 1024 is small, we conclude
that the values ofN are large enough for precise diagonalizations. Especially, in calculating ensemble averaged
polarizations, the difference betweenN = 512 andN = 1024 are less than 3% (K = 2.0, h/(2π)2 = 0.007 816).
Thus we employN = 512 for h/(2π)2 = 0.007 816 to draw figure 2, the nonlinear parameter dependence of the
ensemble averaged polarization.
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Figure 1. Poincaŕe sections of two classical mappings described by the Hamiltonians (i)
〈↑ |Ĥ (t)| ↑〉 and (ii) 〈↓ |Ĥ (t)| ↓〉 with the differenceδK = 0.0625. The values of the
nonlinear parameterK are (a) K = 0.4, (b) K = 0.8, and (c) K = 2.0.
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Figure 2. Responses of ensemble averaged polarizationP̄ to the nonlinear parameterK for
three values of Planck’s constanth (1) h/(2π)2 = 0.031 26, (2)h/(2π)2 = 0.015 63, and (3)
h/(2π)2 = 0.007 816. Other parameters in the numerical experiments areδK = 0.0625 and
J̃ = 0.0625.

ensembles in the caseh/(2π)2 = 0.007 328, which corresponds to the curve 3 in figure 2.
Figure 3(i) depicts the correlation between the expectation value of rotor’s momentum

p and the polarizationP in the ensemble of eigenstates. Since the phase-space dynamics
of the rotor has the translation symmetry(q, p)→ (q, p + 2π) along the momentum axis
and the parity symmetry(q, p) → (−q,−p), the momentum expectation value of each
eigenstate is reduced into the range 06 p 6 π according to these symmetries in the figure.
In order to explain the accumulation of points in figure 3(i), the distributions of polarizations
are depicted in figure 3(ii).

4.1.K = 0.4: regular dynamics, vivid tunnelling

First, let us consider figure 3(a), for which K = 0.4 and the corresponding classical
dynamics is very regular. In this case, we can interpret the graph very easily by remembering
the rotor’s phase space structure of the corresponding classical dynamics (figure 1(a)). The
points accumulated on a vertical line atp = 0 correspond to the libration around the fixed
points(q, p) = (π, 2πn) for n ∈ Z. These accumulated points are gathered from the range
0 6 p . π/3 due to the locking mechanism in the libration. Most of these points have a
large polarizationP close to 1, though some of them have small values (≈ 0.5). A similar
structure is observed atp = π . On this occasion, the locking comes from the librational
motion around the period-2 periodic points(q, p) = (0, (2n + 1)π), (π, (2n + 1)π) for
n ∈ Z. On the other hand, the other points in the rangeπ/3 . p . π lie on a one-
dimensional smooth curve. This one-to-one smooth functional relationship betweenp and
P in quantum mechanics is a result of the regular phase space structure of the corresponding
classical dynamics (Toda and Ikeda 1987). These points on the curve corresponds to the
rotation. Though the points have relatively large values ofP , which are close to 1, we
observe that this curve has a concave hollow aroundp = 3π/4, where the polarizationP
takes≈ 0.8. This hollow is the origin which reduces the ensemble averaged polarization
P̄ due to the large number of states belonging to the hollow, whenK is small (curve 3 in
figure 2). In fact, most (80–90%) of these eigenstates whose polarization is reduced from 1
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(a) K = 0.4

(b) K = 0.8

(c) K = 2.0
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Figure 3. (i) Correlations between the expectation value of the momentum of the rotorp

and the polarizationP for stationary states in the caseh/(2π)2 = 0.007 816, where one point
corresponds to one eigenstate. The values of the nonlinear parameterK are (a) K = 0.4, (b)
K = 0.8, and (c) K = 2.0. Other parameters are the same as in figure 2. Arrows in (a) and (c)
indicate states which are shown in figures 4 and 6. Two states arrowed in (b) will be explained
in the main text. (ii) Distributions of the values of the polarization.

to≈ 0.5–0.8 form pairs of ‘tunnelling doublets’, which was explained before. In figure 4, we
visualize the Hushimi distribution function for a pair of such tunnelling doublets, which are
pointed by an arrow in figure 3(a). These eigenstates have small polarizations in the graph.
The reason why these eigenstates have such low polarizations and extend to both of the up
and the down manifolds (σz = +1 and−1) of wavefunctions can be understood as follows.
If the tunnelling matrix elementJ does not exist, each eigenstate should localize in either the
up or the down manifold. When we turn onJ as a perturbation, two unperturbed eigenstates
whose eigenangles are almost degenerate are accidentally mixed up by the perturbation to
form a pair of tunnelling doublets. We can calculate the degree of mixture, namely, the
decrease of the polarization by perturbation theory; we will derive the perturbed polarization
P in appendix A:

P =
(

1+ 4|S|2(|Jeff|/1Eunpert)2

1+ 4(|Jeff|/1Eunpert)2

)1
2

(5)

where1Eunpert and S are the difference of energies and the overlapping integral for two
unperturbed states respectively and the quantityJeff is the effective tunnelling matrix element
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Figure 4. Hushimi distribution functions of a pair of tunnelling doublets (K = 0.4, h/(2π)2 =
0.007 816) (i) ‘symmetrical’ stateψs and (ii) ‘asymmetrical’ stateψa . These tunnelling doublets
are composed of two localized states which are the 15th state on the up manifold and the 13th
state on the down manifold. Quasienergies (modh = 0.308 58) ofψs andψa are 1.97×10−3 and
2.39× 10−3, respectively. Three Hushimi functions (a) |〈q, p,↑ |ψ〉|2, (b) |〈q, p,↓ |ψ〉|2 and
(c) their summation are drawn for each eigenstateψ , where the amplitude of each component
is shown in the plots. Polarization of the statesψs andψa are 0.560 and 0.552, respectively.
The area corresponding to Planck’s constanth is indicated by a square.

and is defined in (A11). In appendix A, we also obtain an approximate relationship

Jeff ' JS. (6)

In our explanation of the entangled states with the tunnelling doublets picture, the
polarizationP , our measure of entanglement is governed by two parameters according to
(5) and (6). One is1Eunpert, which is the distance in energy between two unperturbed
states; the smaller1Eunpert becomes, the easier it becomes to mix two unperturbed states
that are localized on the up and the down manifolds, respectively. Things are the same for
ordinary tunnelling processes. The other parameter is|S|, the magnitude of the overlapping
between the rotor’s components of the unperturbed states. It has two meanings. On the
one hand,|S| determines the magnitude ofJeff through (6). Especially,|S| → 0 means
Jeff → 0. Consequently, two unperturbed states do not mix through the perturbation and
P → 1. On the other hand,|S| determines the degree of coherence of the tunnelling
doublets. For example, when|S| → 1, the tunnelling doublets become coherent. Hence
the polarizationP becomes unity. Assume that the state of the system is described by the
Hilbert space spanned by a pair of tunnelling doublets. Then, when|S| becomes smaller, it
becomes easier to guess on which manifold, up or down, the two-level system is found after
the rotor part of the system is observed. Namely, with fixed value of|J eff|/1Eunpert, the
quantum mechanical correlation (entanglement) between the rotor and the two-level system
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Figure 5. Quantum number of a pair of tunnelling doubletsn versus polarizationP . As is
explained in the main text, there are four values ofP for single value ofn: (1) polarization of
one doublet that has larger probability on the up manifold; (2) polarization of the other doublet
that has larger probability on the down manifold; (3) perturbation theory (5); (4) perturbation
theory (5), with the approximation (6) forJeff. The values of the nonlinear parameterK are
(a) K = 0.4, (b) K = 0.8. Other parameters areh/(2π)2 = 0.007 816,δK = 0.0625 and
J̃ = 0.0625.

becomes stronger (i.e.P becomes smaller) when|S| becomes smaller. This is the particular
situation for the entanglements; there is no corresponding phenomenon for tunnellings.

In figure 5, we compared with the perturbation theory (5) and the numerical experiments
in the regular region (K = 0.4, 0.8), by plotting the values of polarization. We represent,
in the figures, the eigenstates that can be regarded as tunnelling doublets and have supports
in the momentum space 0< p < π . Since the systems are regular, we can assign
quantum numbers for the eigenstates. In the figures, we employ the quantum number
for the horizontal axis. First, we explain the assignment of quantum numbers in the
following. We assign a quantum numbern = 0 to the ‘ground state’ among the librational
eigenfunctions that are centred at(q, p) = (π, 0). We regard the rotational eigenstates as the
‘excited’ states to the librational states. Accordingly, we assign higher quantum numbers
to the rotational eigenstates. Next, we plot the values of polarization corresponding to
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the tunnelling doublets; from the numerical experiment, a pair of doublets has two values
of polarization for each doublet; from the perturbation theory (5), we have one value of
polarization for a pair of doublets. At the same time, we show the values of the perturbed
polarization (5) by employing the approximation (6) for the tunnelling matrix elementJeff.
For these values, we found systematic errors in the rotational region compared to the case
without the approximation (6). This is because the approximation (6) has 20–40% relative
errors.

As we can see in figure 5, for most of entangled states, the perturbation theory (5)
explains the numerical experiments well. In the figure, we point out several valleys with
arrows marked ‘A’. They correspond to the tunnelling doublets that have small polarization
due to the accidental near-degeneracies. (In fact, the tunnelling doublets that we show in
figure 4 correspond to the valley shown in figure 5(a).)

Next, we explain the case in which the perturbation theory (5) does not work well. In
figure 5, we point out cave-ins with arrows marked ‘P’. These entangled states are, in fact,
not tunnelling doublets and have significant contributions from more than two unperturbed
states. In addition, some eigenstates (10–20%) cannot be regarded as doublets. Namely, in
order to apply a perturbation theory forJ on these entangled states, we must incorporate
more than two (3–8) unperturbed states. Here we explain by an example that these entangled
states emerge due to the regular structure of the unperturbed system. Let us consider two
entangled states that are pointed by arrows in figure 3(b) and are placed out of the smooth
curve alongπ/2 < p < π in the figure. The entangled states are mainly composed of
two unperturbed states that correspond to the period-4 and the period-3 rotations of the
rotor on the up and the down manifolds, respectively. These two unperturbed states are
nearly degenerate but have only small overlap. Consequently, the perturbation formula
(5) gives a poor estimationP = 1.0. We point out the reason for the breakdown of the
perturbation formula for these entangled states by elucidating their structure. This is due
to the contribution to the entangled states from the unperturbed state that correspond to
the period 3 rotational motion of the rotor on the up manifold. It has a large overlap with
the state corresponding to the period-3 rotational motion on the down manifold, despite of
the large energy spacing between them. Accordingly, it becomes important to incorporate
the ‘third’ state in addition to the two nearly-degenerate states for these entangled states†.
Hence, we obtained the entangled states that are not tunnelling doublets due to the (pre-
overlapping) resonance. As we can see in the scatter of points among 0< p < π/3 in
figure 3(i), these effects make the locking structure due to the classical libration imperfect.

4.2.K = 0.8: regular dynamics, suppressed tunnelling

When K is increased from 0.4 (figure 3(a)) to 0.8 (figure 3(b)), keeping the classical
dynamics to be regular, we notice that, in these figures, the one-dimensional branch around
2π/3 . p . π corresponding to the rotational motion moves upward. Consequently, in
figure 2, the averaged polarization̄P becomes larger whenK is increased in the regular
region 06 K . Kc ∼ 1. In this paragraph, we will explain why the polarization of the
eigenstates on the rotational branch becomes larger, whenK is increased in the regular

† Bohigas, Tomsovic and Ullmo found that the parameter dependences of the energy splitting for tunnelling
doublets behave irregularly under the influence of the ‘chaotic states’, to which a quantum number cannot be
assigned through the EBK semiclassical quantization procedure (Einstein 1917, Brillouin 1926, Keller 1958). In
contrast to this, our result suggests that the ‘regular’ states can complicate the parameter dependence for the energy
splitting of the tunnelling doublets. However, this is a pseudo-complication, since it can be explained in terms of
the regular structure of the unperturbed system as is explained in the main text.
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region, based upon formulae (5) and (6) from the perturbation theory. Formulae (5) and
(6) have two parametersS and1Eunpert which concern the unperturbed system, whereS

is the overlapping between two unperturbed states and1Eunpert is the energy difference of
the two unperturbed states. In our case, the two unperturbed eigenstates are the rotational
eigenstates of the two quantum standard mappings corresponding to the separated up and
down manifolds, for which the values of the nonlinear parameterK are K + δK and
K − δK, respectively. Furthermore, the two rotational eigenstates have the same value for
the quantum numbern of the quantum standard mapping in the regular region. Accordingly,
we will express these unperturbed eigenstates as|φn(K + δK)〉 and |φn(K − δK)〉, where
|φn(K)〉 is thenth rotational eigenstate of the quantum standard mapping with the nonlinear
parameterK.

By using these states, the energy difference1Eunpert and the overlappingS, which
determine the polarizationP through (5) and (6), are calculated as

1Eunpert≡ En(K + δK)− En(K − δK) (7)

S ≡ 〈φn(K + δK)|φn(K − δK)〉 (8)

whereEn(K) is thenth rotational eigenenergy of the quantum standard mapping with the
nonlinear parameterK.

As we mentioned earlier, the perturbed polarization formula (5) explains the numerical
result well. Furthermore, in appendix B, concerning to the two inputs1Eunpert and |S| to
the formula, we observe that the values of1Eunpert become twice as large and the values
of |S| stay constant when we increase the nonlinear parameterK from 0.4 to 0.8. By
substituting these results in appendix B to formulae (5) and (6), these formulae explain the
increase of the polarization for rotational states observed from figure 3(a) to figure 3(b),
which was mentioned before.

Consequently, we can say that since the difference of the two unperturbed eigenenergies
in a pair of doublets1Eunpert becomes larger, keeping the same order of magnitude of|S|,
the tunnelling between the two manifolds becomes more difficult and the polarization for
the pairP becomes larger whenK is increased from 0.4 to 0.8. Accordingly, the hollow
in figure 3(a) disappears in figure 3(b) and the averaged polarization̄P takes lager value
in the latter case.

Furthermore, in appendix B, the above parameter dependences of1E andS uponK,
1E ∼ CK with C > 0 andS ∼ constant, will be explained by a simple semiclassical
analysis for a pendulum.

4.3.K = 2.0: chaotic dynamics, chaotic entangled state

WhenK is increased further, global stochasticity emerges in the corresponding classical
systems. Although the transition to global stochasticity is softened by non-zero Planck’s
constant in the quantum system as usual, the quantum correlations, i.e. the quantum
entanglements, begin to be created atK ∼ Kc due to the stochasticity. Figure 3(c) shows
the disappearance of the structure in the correlation between the expectation value of the
rotor’s momentump and the polarizationP . This is due to the quantum correspondent of
the resonance overlapping (Toda and Ikeda 1987). Most of the eigenstates are entangled
except around the rotor’s elliptic points(q, p) = (π, 2πn) for n ∈ Z where the dynamics
of the rotor still remain regular. These entangled states cannot be localized on a manifold.
Accordingly, the polarizationP for these eigenstates extended on both manifolds can take
any value from the range 06 P 6 1 depending on the degree of the extendedness. Many
eigenstates have complicated patterns in phase space, when visualized by the Hushimi
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Figure 6. Hushimi functions of a chaotic entangled state (K = 2.0, h/(2π)2 = 0.007 816).
Three plots are shown in the same way as in figure 4. The polarization of the state is 0.188.
The area corresponding to Planck’s constanth is indicated by a square.

function (Hushimi 1940, Takahashi and Saitô 1985) (see figure 6) and are clearly different
from ones in the regular stage. These chaotic entangled states are different from tunnelling
doublets (the regular entangled states) in the regular region. Both entangled states are more
or less extended on both manifolds by definition. However, for almost all regular entangled
states (80–90%), each state has the twin brother; the twins forms tunnelling doublets (see
figure 4). On the other hand, any chaotic entangled states never have a twin brother. A
chaotic entangled state is shown in figure 6.

We explain how the chaotic entangled states are described by the perturbation theory
on the tunnelling matrix elementJ . Especially, we emphasize the difference to the case
for the regular entangled states. First of all, we introduce the entropy of an eigenstate|ψ〉
defined by the eigenstates of the unperturbed system:

H(|ψ〉) = −
∑
n

∑
σ=↑,↓

pnσ logpnσ (9)

where

pn↑ = |〈φn(K + δK),↑ |ψ〉|2 (10)

pn↓ = |〈φn(K − δK),↓ |ψ〉|2. (11)
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Figure 7. Distributions of the value of the entropy (9) of the stationary state. The value of
the Planck constant ish/(2π)2 = 0.007 816. The values of the nonlinear parameterK are (a)
K = 0.4, (b) K = 0.8, (c) K = 2.0. Other parameters are the same as in figure 2.

Two sets of eigenstates{|φn(K+ δK)〉}n and{|φn(K− δK)〉}n are the sets of eigenstates of
the standard mapping on the up and the down manifolds, respectively, for the unperturbed
system. Hence, the entropyH(|ψ〉) represents the logarithm of how many unperturbed
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states the state|ψ〉 is spanned by. We note that the entropy defined here essentially
depends on the unperturbed states. In figure 7, we show the distributions ofH(|ψ〉).
We explain the figure as follows. In the distributions, the peak atH = 0 corresponds
to the eigenstates that are changed only little by the perturbation. In addition to this, in
figure 7(a) (K = 0.4), we have a peak atH ∼ 0.4. This corresponds to the tunnelling
doublets. By comparing the value of the entropy with log 2, which represents the case in
which a tunnelling doublet is composed of two unperturbed states with equal weight, it
is clear that most tunnelling doublets are biased to one of the unperturbed states. This is
because the values of the nonlinear parameters of two standard mappings in the unperturbed
system are different. (In terms of the tunnellings in the double well potential, the asymmetry
of the potential corresponds to the reason for the biases.) In figure 7(b) (K = 0.8), the
peak that characterizes the existence of a tunnelling doublet atK = 0.4 disappears. At
the same time, the peak atH = 0 broadens. As we explained earlier, this is because the
entanglements of the tunnelling doublets are destroyed due to the increase in the value of
the nonlinear parameterK. In the figure for the chaotic rotor (figure 7(c), K = 2.0), there
still remains the peak atH = 0. This corresponds to the regular states around the elliptic
fixed points at(q, p) = (π, 2πn) (n ∈ Z). In contrast to this, the broad (width∼ 1.2)
peak atH ∼ 1.6 corresponds to the chaotic entangled states. A chaotic entangled state
is spanned by approximately exp(H) unperturbed states (e.g. for the state corresponding
to the peak ofH is spanned by exp(1.6) = 4.95 unperturbed states.) Hence, in order to
obtain only one eigenstate by the perturbation theory forJ , we must incorporate a set of
many unperturbed states. Furthermore, differently to the regular region, since it becomes
impossible to assign proper structure for the unperturbed states, we can characterize the set
of unperturbed states only by the range of the (quasi-) energies. We explain the reason
why we must incorporate so many states in order to execute the perturbation theory in the
chaotic region. First, we remember the regular region. In this case, the entangled states
are composed of the unperturbed states that are in the ‘neighbourhood’ in the phase-space
representation (the Hushimi representation). Apart from this, we have near-degeneracies
of the unperturbed states. However, even they are strongly near-degenerate, since they are
far apart in the phase-space representation, they are not mixed by the weak perturbation
to compose entangled states. When the system becomes chaotic, these states spread in the
phase-space representation due to the resonance overlapping. Accordingly, they become
easier to be mixed by the ‘weak’ (in this case, the same order of magnitude compared
with the regular case mentioned above) perturbation to produce the chaotic entangled states,
even though unperturbed eigenenergies repel. In other words, in the regular case, since the
amplitude of unperturbed states in the phase space representation are concentrated in an area,
they can produce entangled states thanks to the relatively large overlapping integral even if
they are far apart in the eigenenergies. In contrast to this, in the chaotic case, even if the
overlapping between two unperturbed states are relatively small, in the narrow range of the
eigenenergy, there are many unperturbed states that are able to be mixed by the perturbation
to produce the chaotic entangled states. The results of the numerical experiments support this
explanation. On one hand, for a set of regular entangled states, the (quasi-) energy spacings
1Esplit among them are1Esplit/h ∼ 10−2, except for accidental near-degeneracies. On the
other hand, for a set of chaotic entangled states,1Esplit/h ∼ 10−3. Finally, in order to
complete the whole procedure of the perturbation theory, we must diagonalize the Floquet
matrix that is truncated into the Hilbert space that is spanned by the set of unperturbed states.
As we often see, we cannot generally give the clear physical interpretation of the eigenstate
only by diagonalizing the Floquet matrix or the Hamiltonian of the system. Hence, our
perturbational analyses presented here do not give a clear physical picture for the chaotic
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entangled states, though they could for the regular entangled state.

5. Discussion

We discuss two topics concerning our results of the numerical experiments. First, we
explain the relationship between our result and the previous studies on the influences of
chaotic dynamics on quantum mechanical tunnelling phenomena. Second, we summarize
our result in terms of a semiclassical theory to give an outlook.

We studied in this paper the quantum mechanical entanglements between the two-level
system and the rotor in the spin-kicked rotor. At the same time, it is interesting to discuss
the relationship between our result and the influences of chaotic dynamics on quantum
mechanical tunnelling phenomena. Before we explain this relationship, we refer to the
previous works on the influences of chaos on tunnelling (Roncagliaet al 1994, Bohigaset
al 1993, Tomsovic and Ullmo 1994, Utermannet al 1994). In particular, in the former
three works, they studied the tunnelling doublets themselves. On the other hand, Utermann
et al observed how the tunnelling doublets are destroyed under the influence of the chaotic
diffusion in phase space. They find, for the tunnelling doublets, that the energy splitting
and the overlapping of the Hushimi functions with the chaotic region in the phase space are
strongly correlated. Hence, they concluded that by touching the chaotic region in the phase
space, a pair of tunnelling doublets breaks up their tunnel splitting (Utermannet al 1994).
However, from the viewpoint employed in the above four works, it is impossible to discuss
the role of the well-developed chaotic dynamics for the tunnelling processes. Keeping this
in mind, we discuss our result as a problem of quantum mechanical tunnellings. Since,
in the spin-kicked rotor, we assign two subsystems, the two-level system and the rotor, to
the coherent tunnelling and the chaotic diffusive degrees of freedom respectively, we can
discuss the role of the well developed chaotic dynamics for the tunnelling processes. The
followings are our conclusion for the influences of the rotor’s dynamics on the incoherent
tunnelling processes between the up and the down manifolds in the two-level system.
When the dynamics of the rotor is regular and the value of the nonlinear parameter is
small, many tunnelling doublets are produced due to the accidental near-degeneracies in the
unperturbed system, which has a zero tunnelling matrix element. By changing the value of
the nonlinear parameter in the regular region, the accidental near-degeneracies are generally
destroyed. Accordingly, the tunnelling processes due to the doublets are suppressed. When
the dynamics of the rotor is chaotic, the tunnelling processes in the two-level system are
enhanced by the chaotic entangled states. Finally, we point out the most important difference
between the tunnelling processes due to the tunnelling doublets and the chaotic entangled
states. With the tunnelling doublets, the tunnelling process is simple since there is only one
characteristic tunnelling frequency that is determined by the energy splitting of the doublet.
One the other hand, the tunnelling processes due to the chaotic entangled states have many
characteristic frequencies since the chaotic entangled states involve many unperturbed states
that localize on a manifold in the two-level system (cf figure 7(c)). Thus such tunnelling
processes are far more complex than ones in the regular region (cf Shudo and Ikeda 1995).

Next, we summarize our numerical experiments in terms of semiclassical theory in
order to seek a more clear physical picture for the chaotic entangled states than in terms
of perturbation theory, which was employed in section 4. When the dynamics of the
corresponding classical rotors is regular, each entangled state is a ‘tunnelling doublet’. Such
a tunnelling doublet is composed of the two unperturbed states which are localized on the
up (σz = +1) and the down (σz = −1) manifolds of the two-level system. These localized
states on both manifolds can be understood quite well in terms of classical dynamics of
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the kicked rotors described by the HamiltoniansĤK+δK and ĤK−δK . Since the classical
dynamics described by the either Hamiltonian is regular, the well established theory of
semiclassical quantization for regular systems, which is called the Einstein–Brillouin–Keller
(EBK) quantization (Einstein 1917, Brillouin 1926, Keller 1958), can be applied to the split
system on the upper or lower manifold. A resultant eigenfunction should be concentrated
on some invariant torus, which is selected by the EBK rule. At the next step, in order to
complete the semiclassical quantization of the whole system, it is enough to incorporate the
weak tunnelling effect as a perturbation to the unperturbed systems split into the upper and
the lower manifolds. On the other hand, in the chaotic stage (Kc � K), the ‘tunnelling
doublet’ picture cannot be applied. The dynamics of the rotor and the two-level system
cannot be separated as in the regular stage. Namely, from the beginning, we must incorporate
the transition between the upper and the lower manifolds due to the tunnelling effect, which
does not exist in the usual classical dynamics, with the rotor’s dynamics, in order to perform
some semiclassical quantization for the chaotic spin-kicked rotor. The procedure to perform
the semiclassical quantization for such a chaotic system living on multiple potential surfaces
has been desired for a long period. However, none has yet succeeded in inventing something
that really works.

6. Summary

We summarize our work as follows. We studied the quantum mechanical entanglements of
the spin-kicked rotor in weak coupling case between the two-level system and the rotor.
As a measure of entanglement, we employed the polarization of the two-level system. In
the numerical experiments, we found that the nature of quantum mechanical entanglements
changes drastically according to the change of the nature of the corresponding classical
dynamics from regular to chaotic in the semiclassical region. With the regular rotor,
entangled states are generally tunnelling doublets. On the other hand, with the chaotic
rotor, any entangled state has no twin brother and we named these states chaotic entangled
states.
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Appendix A. A derivation of the polarization (6) by a degenerate perturbation
method

In this appendix, we derive a formula (5) for the polarizationP of the eigenstate|9〉 of the
spin-kicked rotor with a perturbation method.

We start our derivation for a more general system described by the Floquet operatorÛ

Û = exp

{
1

ih̄
T̂

}
exp

{
1

ih̄
(V̂0+ εŴ )

}
(A1)
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whereεŴ is the perturbation for the unperturbed Floquet operatorÛ0

Û0 = exp

{
1

ih̄
T̂

}
exp

{
1

ih̄
V̂0

}
. (A2)

Without the perturbationεŴ , eigenkets|φ〉 and |ψ〉 of Û0 have quasienergiesf and g,
respectively; i.e.Û0|φ〉 = |φ〉ef/ih̄ andÛ0|ψ〉 = |ψ〉eg/ih̄. Assume that quasienergiesf and
g are nearly degenerate (i.e.1Eunpert/h̄ = (f−g)/h̄ = O(ε)), then a ket|9〉 = |φ〉α+|ψ〉β
is an approximate eigenstate ofÛ . In this case, the eigenvalue equation

Û |9〉 = |9〉eE/ih̄ (A3)

becomes the following equation for a vector( α β ):

Ûtrunc

(
α

β

)
=
(
α

β

)
eE/ih̄ (A4)

where

Ûtrunc=
( 〈φ|Û |φ〉 〈φ|Û |ψ〉
〈ψ |Û |φ〉 〈ψ |Û |ψ〉

)
. (A5)

Next, we introduce a unitary operator

Ûperturb= exp

(
− 1

ih̄
V̂0

)
exp

{
1

ih̄
(V̂0+ εŴ )

}
(A6)

so that the equation̂U = Û0 · Ûperturb holds. This unitary operator̂Uperturb can be expressed
as

Ûperturb= exp
←

{
ε

ih̄

∫ 1

0
dτ Ŵ (τ )

}
(A7)

where exp
←

is the time ordered exponential and̂W(t) = e−V̂0t/ih̄ŴeV̂0t/ih̄. For latter

convenience, we introducêu = ∫ 1
0 dτ Ŵ (τ ). Assuming that the difference betweenE/h̄

and Ē/h̄ ≡ (f + g)/(2h̄) is O(ε): we can consider the following expansion byε:

e−E/ih̄Ûtrunc= 1̂+ 1

ih̄
(Ĥtrunc− E1̂)+O(ε2) (A8)

where, by using (A5) and (A7),̂Htrunc can be expressed as

Ĥtrunc= Ē + εū+ 1E
unpert+ ε1u

2

(
1 0
0 −1

)
+ ε

(
0 J ∗eff
Jeff 0

)
. (A9)

Here, ū = (〈φ|û|φ〉 + 〈ψ |û|ψ〉)/2 is the perturbed energy shift,1u = 〈φ|û|φ〉 − 〈ψ |û|ψ〉
is the perturbed energy difference andJeff = 〈ψ |û|φ〉 is the effective tunnelling matrix
element. Finally, from (A4) and (A8), the eigenvalue equation becomes

Ĥtrunc

(
α

β

)
=
(
α

β

)
E +O(ε2). (A10)

We apply the general formula (A10) to our model system used in the main text, the spin-
kicked rotor, when the couplingBx(q̂) between two manifolds| ↑〉 and| ↓〉 is weak. For this
model, the quantities that appeared in the general analysis are expressed asV̂0 = Bz(q̂)σ̂z and
εŴ = Bx(q̂)σ̂x . The unperturbed eigenstates are|φ〉 = |φrot〉⊗ | ↑〉 and|ψ〉 = |ψrot〉⊗ | ↓〉.
Thus we havēu = 1u = 0 and

Jeff = 〈ψrot|T (q̂)|φrot〉 (A11)
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where

T (q) = Bx(q)sin{Bz(q)/h̄}
Bz(q)/h̄

e−iBz(q)/h̄. (A12)

By solving (A10), we obtain two perturbed eigenstates. From these eigenstates, we can
calculate their polarization as was explained in section 3. Then, we find that the polarization
for the two eigenstates takes the following equal value:

P =
(

1+ 4|S|2(|Jeff|/1Eunpert)2

1+ 4(|Jeff|/1Eunpert)2

)1
2

(A13)

whereS = 〈ψrot|φrot〉 is the overlapping integral between two unperturbed states of the
rotor. This is the desired formula (5).

Finally, we show that the tunnelling matrix elementJeff appeared in (A13) can be
expressed in a simpler form (qc is the curve crossing point, see the explanation below)
with good approximation when the following conditions are satisfied: (a) The semiclassical
approximation on eigenstates|φrot〉 and |ψrot〉 describes the rotor on the up and the down
manifolds well; (b) as a function ofq, T (q) varies much slower than the phase of〈q|φrot〉
and 〈q|ψrot〉. Namely, the magnitude of the perturbationBz(q) is much smaller than the
magnitude of the rotor’s action integral. By using the condition (a), we are allowed
to evaluate the overlapping integralS = ∫

dq 〈ψrot|q〉〈q|φrot〉 with the stationary phase
approximation. For the spin-kicked rotor, the stationary phase point is almost the same as
the curve crossing pointqc, where the potential curves for〈↑ |V̂ (q)| ↑〉 and 〈↓ |V̂ (q)| ↓〉
coincide (see Landau and Lifshitz 1977, section 90). Furthermore, condition (b) means that
in evaluating the effective tunnelling matrix elementJeff =

∫
dq 〈ψrot|q〉T (q)〈q|φrot〉 by the

stationary phase approximation,T (q) can be regarded as just a constant amplitude factor
and is factored out from the remaining oscillatory integral with good approximation. Hence,
within the stationary phase approximation, equationJeff = ST (qc) holds. In the case of the
present paper, conditions (a) and (b) are satisfied and moreoverT (qc) becomes equal toJ .
We arrive at the final expression forJeff as

Jeff = SJ. (A14)

Thus we have finished the derivation of (7) in the main text.

Appendix B. A semiclassical analysis of the pendulum in the rotational motion

In order to understand qualitatively the numerical result on the standard mapping in the
regular rotational motion reported in section 3, here we analyse the rotational motion of the
quantized pendulum, in the semiclassical region, which is described by the Hamiltonian

H = 1
2p

2+K cosq (B1)

whereq andp are the position coordinate and the momentum of the pendulum, respectively.
We expect that the pendulum will be good approximation for the regular standard mapping.
We calculate, for the pendulum, (a) the energy difference

1Eunpert
n (K, δK) ≡ En(K + δK)− En(K − δK) (B2)

and (b) the overlapping integral

Sn(K, δK) ≡ 〈n(K + δK)|n(K − δK)〉 (B3)

whereEn(K) and |n(K)〉 are thenth eigenenergy and thenth eigenstate, respectively. In
section 3, we numerically studied the dependences of the energy difference1Eunpert and
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the overlappingS on the nonlinear parameterK for the standard mapping in the regular
rotational motion. Here we will obtain analytical expressions of1Eunpert and S for the
pendulum and compare them with the numerical result for the standard mapping.

The plan of this appendix is as follows. First we formally obtain the semiclassical
quantization condition and semiclassical eigenfunctions of the pendulum in the rotational
motion. Next, by using a perturbation method fork = √2(K/E)/(1+ (K/E)) (E: the
energy of the pendulum), we derive analytical expressions of1Eunpert andS. We compare
these expressions with the numerical data of the quantized standard mapping in the regular
rotational region. Finally, we summarize this appendix.

Since we are interested in the rotational motion of the pendulum, we impose the
condition 0 6 K < E on the energyE of the pendulum. In order to treat rotational
eigenstates in the position coordinate representation, we write the momentump as a function
of the energyE and the positionq:

p =
√

2E − 2K cosq (B4)

where we choose the positive momentump > 0. The semiclassical wavefunctionψ(q) is
expressed as follows (Landau and Lifshitz 1977, section 46):

ψ(q) ∝ 1√
p(q)

exp

{
i

h̄

∫ q

dq ′ p(q ′)
}
. (B5)

We impose the periodic boundary conditionψ(q + 2π) = ψ(q) on this wavefunction. The
Bohr–Sommerfeld semiclassical quantization condition for the rotational motion is∫ 2π

0
dq p(q) = 2πnh̄ (B6)

wheren is an arbitrary integer. Since the integral in (B6) can be expressed with the complete

elliptic integral of the second kindE(k) ≡ ∫ π/20 dθ
√

1− k2 sin2 θ , the quantization condition
becomes

8
√
K

E(k)
k
= 2πnh̄ (B7)

where the modulusk = √2K/(E +K). We call the solution of (B7)kn, which is the
quantized modulus. Accordingly, thenth eigenenergy isEn = K(2/kn2 − 1). Oncekn is
quantized, the action integral modulo 2πh̄, In(q) can be expressed as

In(q) ≡
∫ q

−π
dq ′ p(q ′) (mod 2πh̄) (B8)

= 4
√
KE

(
q + π

2
, kn

)/
kn (B9)

where E(ϕ, k) ≡ ∫ ϕ
0 dθ

√
1− k2 sin2 θ is the elliptic integral of the second kind (when

the action integral is substituted into (B5), this modulo operation has no effect). Thenth
eigenfunction of the pendulumψn(q) is written as follows:

ψn(q) = 1

2
√K(kn)

(
1− kn2 cos2

q

2

)− 1
4

exp

{
i

h̄
In(q)

}
(B10)

whereK(k) ≡ ∫ π/20 dθ/
√

1− k2 sin2 θ is the complete elliptic integral of the first kind.
For these formal semiclassical expressions (B7) and (B10), we analyse them with the

perturbation expansion fork2, which is almost the same as the perturbation expansion for
K. Actually, the lowest approximation yields the same eigenenergies and eigenfunctions
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for the free rotor described by the HamiltonianH = 1
2p

2. Furthermore, we calculate the
next order approximation. In this approximation, the elliptic integrals of the first and the
second kinds are

F(ϕ, k) ' ϕ + k
2

4
(ϕ − 1

2 sin 2ϕ) (B11)

E(ϕ, k) ' ϕ − k
2

4
(ϕ − 1

2 sin 2ϕ) (B12)

respectively, and the complete elliptic integrals areK(k) ' (π/2)(1 − (k2/4)) and
E(k) ' (π/2)(1+(k2/4)). We obtain the quantized modulus by solving (B7) approximately
and the result iskn = (

√
(h̄n)2+ 4K − h̄n)/√K. Accordingly, the eigenenergyEn and the

actionIn(q) for the nth eigenstate is

En = 1
4(h̄n)

2+ 1
4(h̄n)

√
(h̄n)2+ 4K − 1

2K

= 1
2(h̄n)

2+O(K2) (B13)

In(q) = h̄n(q + π)− 1
2

(√
(h̄n)2+ 4K − h̄n

)
sinq

= h̄n(q + π)− sinq

h̄n
K +O(K2). (B14)

The eigenfunction of thenth stateψn(q) becomes

ψn(q) = 1√
2π
(1+ 1

8kn
2 cosq) exp

{
i

h̄
In(q)

}
. (B15)

Let us proceed to calculate the energy difference1Eunpert
n (B2). Though we have

obtained the approximate expression (B13) forEn(K), we cannot utilize directly this
expression (B13) to calculate1Eunpert

n through (B2), since the approximate expression (B13)
for En(K) does not depend onK due to the low order of the approximation. Instead, we
expand1Eunpert

n by smallδK:

1Eunpert
n = ∂En(K)

∂K
(2δK)+O(δK2) (B16)

and evaluate∂En/∂K semiclassically below. The derivative∂En/∂K can be expressed as

∂En(K)

∂K
= 〈n(K)| cosq̂|n(K)〉. (B17)

Then, with (B16), (B17), (B15) and (B14), we obtain the final expression for1Eunpert
n

1Eunpert
n = 1

4

K

En

(
1+ K

En

)−1

(2δK)+O(δK2). (B18)

Next, we calculate the overlapping integralSn (B3). This can be done straightforwardly
with (B15) and (B14):

Sn = J0

(
1

h̄

2δK√
2E0

n + 4K

)
(B19)

whereJ0 is the Bessel function andE0
n = 1

2(h̄n)
2(∼ En).

Before closing this appendix, we compare the analytical expressions (B18) and (B19)
for 1Eunpert

n andSn, which are derived for the quantized pendulum, with the corresponding
numerical experiments performed for the quantized standard mapping. In the numerical
experiments, the nonlinear parameterK is taken to be 0.4 or 0.8 to realize the regular
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Figure B1. Quantum numbern dependences of1Eunpert. The semiclassical theory of the
pendulum and the numerical result of the standard mappings corresponds to (1) and (2),
respectively. The values of the nonlinear parameterK are (a) K = 0.4, (b) K = 0.8. Other
parameters areh/(2π)2 = 0.007 816 andδK = 0.0625.

motion and the rotational eigenstates around 2π/3 . p . π are considered. Common
parameters areδK = 0.0625 andh/(2π)2 = 0.007 816.

First, let us consider the energy difference1Eunpert. In order to compare the
semiclassical expression (B18) of the pendulum and the numerical result of the standard
mappings, we show the quantum numbern dependencies of1Eunpert in figure B1. The
scatter around 20. n . 30 is caused by the resonance located atp = 0. At the same
time, since the region that has larger quantum number (∼50) corresponds to the resonance
located atp = π , we do not show the data in the region. The difference between the
pendulum and the standard mapping is a factor of 2–3. This is due to the absence of the
higher order nonlinear resonances in the pendulum, especially the 1:2 resonance located
at (q, p) = (0, π), (π, π), which has a large influence on the phase-space dynamics of
the standard mapping even in the regular regionK < Kc. Except for this discrepancy in
absolute magnitudes, the proportionality of1E to K with positive coefficient, which was
derived for the pendulum by the perturbation expansions (B18), is actually observed for
the standard mapping. The reason why1Eunpert becomes larger for increasedK can be
explained intuitively as follows. Since d(1Eunpert

n )/dK ∼= 2δK d(〈n(K)| cosq̂|n(K)〉)/dK
from (B16) and (B17), we have to explain that the averaged potential〈n(K)| cosq̂|n(K)〉
over the nth rotational state takes larger value for increasedK. However, this is
simple. WhenK is increased, the eigenenergyEn(K), which is the total energy of the
corresponding motion in the semiclassical theory, can be regarded as almost a constant
sinceEn(K) = En(0) + O(K2); on the other hand, the potential energyK cosq takes a
larger magnitude due to the trivial linear dependence onK. Accordingly, aroundq ≈ 0
or 2π where the potentialK cosq takes its maximum value, the kinetic energy, which is
the difference between the total energy and the potential energy, of the classical motion
corresponding to thenth eigenstate, takes a smaller value closer to zero for the increased
K. The small kinetic energy aroundq ≈ 0 or 2π means the slow velocity and the longer
stay time there. Consequently, large positive values of the potentialK cosq aroundq ≈ 0 or
2π is emphasized in evaluating〈n(K)| cosq̂|n(K)〉 semiclassically and this quantity takes
a larger value.
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Figure B2. Quantum numbern dependences of|S|. Others are the same as in figure B1.

Next we consider the overlapping|S|. In figure B2, we show the quantum number
dependences of|S| calculated by the semiclassical theory of the pendulum (B19) and the
numerical result of the standard mappings. The semiclassical result (B19) overestimates
the values of|S| by 40% compared to the numerical result of the standard mappings. The
reason for the difference between these two systems is the same as in the case of the energy
difference which is mentioned above. On the other hand, the weak dependence ofS onK
is common to the standard mapping and the pendulum. This weak dependence ofS onK
originates from the factS(K = 0) 6= 0. In this aspect, the overlapping integralS contrasts
sharply with the energy difference1Eunpert

n , for which the vanishing value1Eunpert
n = 0 at

K = 0 results in a strong dependence of1Eunpert
n onK aroundK = 0.

We summarize this appendix. First, we analysed the quantized pendulum in regular
rotational motion. For the energy difference1Eunpert, we obtained theK dependence
1Eunpert

n = CK,C > 0 for smallK (B18). On the other hand, the overlapping integral
Sn depends onK only weakly (equation (B19)). Next we compared these results for the
pendulum with the behaviour of the quantized standard mapping. Although the agreement
is only qualitatively, our analysis for the pendulum explains theK dependences of1Eunpert

andS of the quantized standard mapping in the regular rotational motion.
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